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Standards and Portability
• Co-arrays will be part of Fortran 2008

– Shmem 1991
– F-- 1991  (Fortran 77)  Cray-T3D
– SGI Origin 2000 (1996?)  “-ufmm”
– Co-array Fortran 1998   (Fortran 95)
– Cray-T3E (1997?) Cray-X1    (-Z)

• Preprocessors and source-to-source
translators don’t work

• Reference compiler doesn’t work
• Compiler implementation by more than one

vendor is required.
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The SPMD Model

• Gather/compute/scatter
• Bulk Synchronous Protocol
• MacroTasking
• MPI
• Shmem
• Co-Array Fortran
• UPC
• Titanium
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Latency and Bandwidth

• Low latency machines are easier to program
• High bandwidth machines are harder to

program
– Cyber-205/Cray-1=20ns/12.5ns=1.6
– Long vectors are hard to find

• Bandwidth
– 8/t  (byte/sec)
– 1/νt (word/clocktick)

• Slow machines scale better
– (flops/clocktick)/(words/clocktick)=flops/word
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What makes programming hard?
• Science is hard
• Numerical methods are hard
• Boundary conditions are complicated and problem specific
• Geometries are complicated
• Data decomposition is hard, especially if it changes with time
• Mapping a logical decomposition to physical hardware is hard
• Memory management is hard
• Memory race conditions are easy to write, hard to find
• Message passing, either one-sided or two-sided, is hard
• Coordination/Synchronization is hard
• Load balancing is hard
• Computational scientists need to learn the tools of their trade.
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Location, location, location

• The default for everything in CAF is local.
• No distributed data structures.
• Compiler optimizes local code.
• Deliberately designed to prevent the compiler form

doing global optimization.
– Dealing with local memory latency is the compiler’s job
– Dealing with remote memory latency is the programmer’s job

• You need a map: local-to-global and global-to-local
– Use the map only now and then
– Otherwise everything is local
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Global Address Space
• Hardware load/store instruction for any address in the

machine.
– When I need a word of data, I want to issue one instruction

to get it
– Compilers should be able to schedule loads
– Stores should be free

• Minimal cache coherence
– easiest coherence is to have no cache.
– programmable local memory

• Don’t program it as a global address space.
– If all addresses are potentially remote, the compiler has lost
– Race conditions and memory consistency are nightmares!

• BlueGene with a global load/store would blow every
other machine out of the water.
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What is Co-Array Fortran?

• One simple extension to Fortran 95.
• All objects are local to a (virtual) image
• image: CAF’s name for process, thread, task, rank,

processor, core, cpu, pe, domain, locale or enclave.
• Some objects are marked with a co-dimension.
• Programmer can point from an object in one image to

an object with the same name in another image
through, and only through, the co-dimension.

• All communication is one-sided and explicit.
• All synchronization is explicit.
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What is Co-Array Fortran?

• Co-Array Fortran is a simple parallel extension to
Fortran 90/95.

• It uses normal rounded brackets ( ) to point to data in
local memory.

• It uses square brackets [ ] to point to data in remote
memory.

• Syntactic and semantic rules apply separately but
equally to ( ) and [ ].

• Co-Array syntax is a logical statement of my problem.
• The runtime system is responsible for mapping it onto

hardware.
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For Example

real :: y(n),x(n)[∗]
y(:) = x(:)[p]
x(:)[q] = y(:)
x(:)[q] = x(:) + x(:)[p]

• Memory consistency?
• Blocking, non-blocking?



11
University of Minnesota

One-to-One Execution Model
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Load Balancing
• Over decomposition

– Co-array data structures
– Each image holds many patches

• Many more images than processors
•  CAF does not specify how work is done

– Work on local data
– Go get remote data
– Remote procedure invocation:  x[p]%method()?
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Many-to-One Execution Model
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One-to-Many Execution Model
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Many-to-Many Execution Model
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Hierarchical Memory

real :: x[p,q,∗]
y = x[:,r,s]   memory in first level
y= x[p,:,s]   memory in second level
y= x[p,r,:]   memory in third level
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Why Did I Do It This Way?
• I can’t write mirror-image code.
• It had to be easy to understand and natural for the

Fortran language.
• It had to be simple to implement.
• It allowed the compiler to concentrate on local code

optimization.
• I could write the code I wanted to write not code the

compiler or a library wanted me to write.
• All communication is explicitly marked by the syntax.
• If what I wrote doesn’t perform well, I can easily

experiment with other ways of doing it.
• Memory race conditions happen only when I cause it

to happen explicitly.
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What I Don’t Like About It?

• Synchronization is hard to get right.
– Machines with fast barriers and fast atomic

operations no longer exist
– Will transactions or full-empty bits really work

efficiently on very large machines?
• Data decomposition has to be done manually.
• Work distribution has to be done manually.
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Using “Object-Oriented” Techniques
with Co-Array Fortran

• Fortran 95 is not an object-oriented language.
• But it contains some features that can be

used to emulate object-oriented programming
methods.
– Named derived types are similar to classes

without methods.
– Modules can be used to associate methods

loosely with objects.
– Generic interfaces can be used to overload

procedures based on the named types of the
actual arguments.
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Irregular and Changing Data
Structures

z%ptr z%ptr

x
x

z[p]%ptr
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For Example …

type(BlockMatrix) :: a[∗]
type(MatrixMap)   :: map
call newMatrixMap(n,m,k,l,p,q)
call newBlockMatrix(a,map)
call luDecomp(a)
call writeBlockMatrix(a)
call deleteMatrixMap(map)
call deleteBlockMatrix(a)
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LU Decomposition
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Why Language Extensions?

• The language itself need not contain high
levels of abstraction.

• The programmer defines objects that fit the
problem.

• Runtime system maps them onto hardware.
• Compiler evolves as the hardware evolves.

– Lowest latency allowed by the hardware.
– Highest bandwidth allowed by the hardware.
– Data ends up in registers or cache not in memory
– Arbitrary communication patterns
– Communication along multiple channels



24
University of Minnesota

Simple Things That Would Improve
My Productivity

• Fast compile time
• Interactive prototyping mode
• Interactive access to the machine
• Trace back when the program aborts
• Instruction level real-time clock
• Print with node number attached
• Easy graphical display
• Single-processor performance provided by

the compiler


